
Chapter 17. Trees 

and Graphs 

In This Chapter 

In this chapter we will discuss tree data structures, like trees and graphs. 

The abilities of these data structures are really important for the modern 

programming. Each of this data structures is used for building a model of 

real life problems, which are efficiently solved using this model. We will 

explain what tree data structures are and will review their main advantages 

and disadvantages. We will present example implementations and problems 

showing their practical usage. We will focus on binary trees, binary search 

trees and self-balancing binary search tree. We will explain what graph 

is, the types of graphs, how to represent a graph in the memory (graph 

implementation) and where graphs are used in our life and in the computer 

technologies. We will see where in .NET Framework self-balancing binary 

search trees are implemented and how to use them. 

Tree Data Structures 

Very often we have to describe a group of real life objects, which have such 

relation to one another that we cannot use linear data structures for their 

description. In this chapter, we will give examples of such branched 

structures. We will explain their properties and the real life problems, which 

inspired their creation and further development. 

A tree-like data structure or branched data structure consists of set of 

elements (nodes) which could be linked to other elements, sometimes 

hierarchically, sometimes not. Trees represent hierarchies, while graphs 

represent more general relations such as the map of city. 

Trees 

Trees are very often used in programming, because they naturally represent 

all kind of object hierarchies from our surroundings. Let’s give an example, 

before we explain the trees’ terminology. 

Example – Hierarchy of the Participants in a Project 

We have a team, responsible for the development of certain software project. 

The participants in it have manager-subordinates relations. Our team 

consists of 9 teammates: 



682  Fundamentals of Computer Programming with C# 

 

What is the information we can get from this hierarchy? The direct boss of 

the developers is the "Team Leader", but indirectly they are subordinate to 

the "Project Manager". The "Team Leader" is subordinate only to the "Project 

Manager". On the other hand "Developer 1" has no subordinates. The "Project 

Manager" is the highest in the hierarchy and has no manager. 

The same way we can describe every participant in the project. We see that 

such a little figure gives us so much information. 

Trees Terminology 

For a better understanding of this part of the chapter we recommend to the 

reader at every step to draw an analogy between the abstract meaning and 

its practical usage in everyday life. 

 

We will simplify the figure describing our hierarchy. We assume that it 

consists of circles and lines connecting them. For convenience we name the 

circles with unique numbers, so that we can easily specify about which one we 

are talking about. 

We will call every circle a node and each line an edge. Nodes "19", "21", "14" 

are below node "7" and are directly connected to it. This nodes we are called 

Project 

Manager

Team 

Leader

De-

signer

QA Team 

Leader

Developer 

1

Developer 

2

Tester 1
Developer 

3

Tester 

2

Height = 2

Depth 0

Depth 1

Depth 2

7

1421

23

19

31121 6



Chapter 17. Trees and Graphs  683 

direct descendants (child nodes) of node "7", and node "7" their parent. 

The same way "1", "12" and "31" are children of "19" and "19" is their parent. 

Intuitively we can say that "21" is sibling of "19", because they are both 

children of "7" (the reverse is also true – "19" is sibling of "21").For "1", "12", 

"31", "23" and "6" node "7" precedes them in the hierarchy, so he is their 

indirect parent – ancestor, ant they are called his descendants. 

Root is called the node without parent. In our example this is node "7" 

Leaf is a node without child nodes. In our example – "1", "12", "31", "21", 

"23" and "6". 

Internal nodes are the nodes, which are not leaf or root (all nodes, which 

have parent and at least one child). Such nodes are "19" and "14". 

Path is called a sequence of nodes connected with edges, in which there 

is no repetition of nodes. Example of path is the sequence "1", "19", "7" and 

"21". The sequence "1", "19" and "23" is not a path, because "19" and "23" 

are not connected. 

Path length is the number of edges, connecting the sequence of nodes in the 

path. Actually it is equal to the number of nodes in the path minus 1. The 

length of our example for path ("1", "19", "7" and "21") is three. 

Depth of a node we will call the length of the path from the root to 

certain node. In our example "7" as root has depth zero, "19" has depth one 

and "23" – depth two. 

Here is the definition about tree: 

Tree – a recursive data structure, which consists of nodes, connected 

with edges. The following statements are true for trees: 

- Each node can have 0 or more direct descendants (children). 

- Each node has at most one parent. There is only one special node 

without parent – the root (if the tree is not empty). 

- All nodes are reachable from the root – there is a path from the root 

to each node in the tree. 

We can give more simple definition of tree: a node is a tree and this node 

can have zero or more children, which are also trees. 

Height of tree – is the maximum depth of all its nodes. In our example the 

tree height is 2. 

Degree of node we call the number of direct children of the given node. 

The degree of "19" and "7" is three, but the degree of "14" is two. The leaves 

have degree zero. 

Branching factor is the maximum of the degrees of all nodes in the tree. 

In our example the maximum degree of the nodes is 3, so the branching 

factor is 3. 



684  Fundamentals of Computer Programming with C# 

Tree Implementation – Example 

Now we will see how to represent trees as data structure in 

programming. We will implement a tree dynamically. Our tree will contain 

numbers inside its nodes, and each node will have a list of zero or more 

children, which are trees too (following our recursive definition). 

Each node is recursively defined using itself. Each node of the tree 

(TreeNode<T>) contains a list of children, which are nodes (TreeNode<T>). 

The tree itself is another class Tree<T> which can be empty or can have a 

root node. Tree<T> implements basic operations over trees like construction 

and traversal. 

Let’s have a look at the source code of our dynamic tree representation: 

using System; 

using System.Collections.Generic; 
 
/// <summary>Represents a tree node</summary> 

/// <typeparam name="T">the type of the values in nodes 
/// </typeparam> 
public class TreeNode<T> 

{ 
 // Contains the value of the node 
 private T value; 

 
 // Shows whether the current node has a parent or not 
 private bool hasParent; 

 
 // Contains the children of the node (zero or more) 
 private List<TreeNode<T>> children; 

 
 /// <summary>Constructs a tree node</summary> 

 /// <param name="value">the value of the node</param> 
 public TreeNode(T value) 

 { 
  if (value == null) 
  { 

   throw new ArgumentNullException( 
    "Cannot insert null value!"); 
  } 

  this.value = value; 
  this.children = new List<TreeNode<T>>(); 

 } 

 
 /// <summary>The value of the node</summary> 
 public T Value 



Chapter 17. Trees and Graphs  685 

 { 
  get 
  { 

   return this.value; 
  } 
  set 

  { 
   this.value = value; 
  } 

 } 
 

 /// <summary>The number of node's children</summary> 

 public int ChildrenCount 
 { 
  get 

  { 
   return this.children.Count; 
  } 

 } 
 
 /// <summary>Adds child to the node</summary> 

 /// <param name="child">the child to be added</param> 
 public void AddChild(TreeNode<T> child) 
 { 

  if (child == null) 
  { 
   throw new ArgumentNullException( 

    "Cannot insert null value!"); 
  } 
 

  if (child.hasParent) 

  { 
   throw new ArgumentException( 

    "The node already has a parent!"); 
  } 
 

  child.hasParent = true; 
  this.children.Add(child); 
 } 

 
 /// <summary> 

 /// Gets the child of the node at given index 

 /// </summary> 
 /// <param name="index">the index of the desired child</param> 



686  Fundamentals of Computer Programming with C# 

 /// <returns>the child on the given position</returns> 
 public TreeNode<T> GetChild(int index) 
 { 

  return this.children[index]; 
 } 
} 

 
/// <summary>Represents a tree data structure</summary> 
/// <typeparam name="T">the type of the values in the 

/// tree</typeparam> 
public class Tree<T> 

{ 

 // The root of the tree 
 private TreeNode<T> root; 
 

 /// <summary>Constructs the tree</summary> 
 /// <param name="value">the value of the node</param> 
 public Tree(T value) 

 { 
  if (value == null) 
  { 

   throw new ArgumentNullException( 
    "Cannot insert null value!"); 
  } 

 
  this.root = new TreeNode<T>(value); 
 } 

 
 /// <summary>Constructs the tree</summary> 
 /// <param name="value">the value of the root node</param> 

 /// <param name="children">the children of the root 

 /// node</param> 
 public Tree(T value, params Tree<T>[] children) 

  : this(value) 
 { 
  foreach (Tree<T> child in children) 

  { 
   this.root.AddChild(child.root); 
  } 

 } 
 

 /// <summary> 

 /// The root node or null if the tree is empty 
 /// </summary> 



Chapter 17. Trees and Graphs  687 

 public TreeNode<T> Root 
 { 
  get 

  { 
   return this.root; 
  } 

 } 
 
 /// <summary>Traverses and prints tree in 

 /// Depth-First Search (DFS) manner</summary> 
 /// <param name="root">the root of the tree to be 

 /// traversed</param> 

 /// <param name="spaces">the spaces used for 
 /// representation of the parent-child relation</param> 
 private void PrintDFS(TreeNode<T> root, string spaces) 

 { 
  if (this.root == null) 
  { 

   return; 
  } 
 

  Console.WriteLine(spaces + root.Value); 
 
  TreeNode<T> child = null; 

  for (int i = 0; i < root.ChildrenCount; i++) 
  { 
   child = root.GetChild(i); 

   PrintDFS(child, spaces + "   "); 
  } 
 } 

 

 /// <summary>Traverses and prints the tree in 
 /// Depth-First Search (DFS) manner</summary> 

 public void TraverseDFS() 
 { 
  this.PrintDFS(this.root, string.Empty); 

 } 
} 
 

/// <summary> 
/// Shows a sample usage of the Tree<T> class 

/// </summary> 

public static class TreeExample 
{ 



688  Fundamentals of Computer Programming with C# 

 static void Main() 
 { 
  // Create the tree from the sample 

  Tree<int> tree = 
   new Tree<int>(7, 
    new Tree<int>(19, 

     new Tree<int>(1), 
     new Tree<int>(12), 
     new Tree<int>(31)), 

    new Tree<int>(21), 
    new Tree<int>(14, 

     new Tree<int>(23), 

     new Tree<int>(6)) 
   ); 
 

  // Traverse and print the tree using Depth-First-Search 
  tree.TraverseDFS(); 
 

  // Console output: 
  // 7 
  //    19 

  //       1 
  //       12 
  //       31 

  //    21 
  //    14 
  //       23 

  //       6 
 } 
} 

How Does Our Implementation Work? 

Let’s discuss the given code a little. In our example we have a class Tree<T>, 

which implements the actual tree. We also have a class TreeNode<T>, which 

represents a single node of the tree. 

The functions associated with node, like creating a node, adding a child node 

to this node, and getting the number of children, are implemented at the level 

of TreeNode<T>. 

The rest of the functionality (traversing the tree for example) is implemented 

at the level of Tree<T>. Logically dividing the functionality between the two 

classes makes our implementation more flexible. 

The reason we divide the implementation in two classes is that some 

operations are typical for each separate node (adding a child for example), 



Chapter 17. Trees and Graphs  689 

while others are about the whole tree (searching a node by its number). In 

this variant of the implementation, the tree is a class that knows its root and 

each node knows its children. In this implementation we can have an empty 

tree (when root = null). 

Here are some details about the TreeNode<T> implementation. Each node of 

the tree consists of private field value and a list of children – children. The 

list of children consists of elements of the same type. That way each node 

contains a list of references to its direct children. There are also public 

properties for accessing the values of the fields of the node. The methods that 

can be called from code outside the class are: 

- AddChild(TreeNode<T> child) – adds a child 

- TreeNode<T> GetChild(int index) – returns a child by given index 

- ChildrenCount – returns the number of children of certain node 

To satisfy the condition that every node has only one parent we have defined 

private field hasParent, which determines whether this node has parent or 

not. This information is used only inside the class and we need it in the 

AddChild(Tree<T> child) method. Inside this method we check whether the 

node to be added already has parent and if so we throw and exception, saying 

that this is impossible. 

In the class Tree<T> we have only one get property TreeNode<T> Root, 

which returns the root of the tree. 

Depth-First-Search (DFS) Traversal 

In the class Tree<T> is implemented the method TraverseDFS(), that calls 

the private method PrintDFS(TreeNode<T> root, string spaces), which 

traverses the tree in depth and prints on the standard output its elements in 

tree layout using right displacement (adding spaces). 

The Depth-First-Search algorithm aims to visit each of the tree nodes 

exactly one. Such a visit of all nodes is called tree traversal. There are 

multiple algorithms to traverse a tree but in this chapter we will discuss only 

two of them: DFS (depth-first search) and BFS (breadth-first search). 

The DFS algorithm starts from a given node and goes as deep in the tree 

hierarchy as it can. When it reaches a node, which has no children to visit or 

all have been visited, it returns to the previous node. We can describe the 

depth-first search algorithm by the following simple steps: 

1. Traverse the current node (e.g. print it on the console or process it in 

some way). 

2. Sequentially traverse recursively each of the current nodes’ child 
nodes (traverse the sub-trees of the current node). This can be done by 

a recursive call to the same method for each child node. 



690  Fundamentals of Computer Programming with C# 

Creating a Tree 

We to make creating a tree easier we defined a special constructor, which 

takes for input parameters a node value and a list of its sub-trees. That 

allows us to give any number of arguments of type Tree<T> (sub-trees). We 

used exactly the same constructor for creating the example tree. 

Traverse the Hard Drive Directories 

Let’s start with another example of tree: the file system. Have you noticed 

that the directories on your hard drive are actually a hierarchical structure, 

which is a tree? We have folders (tree nodes) which may have child folders 

and files (which both are also tree nodes). 

You can think of many real life examples, where trees are used, right? 

Let’s get a more detailed view of Windows file system. As we know from our 

everyday experience, we create folders on the hard drive, which can contain 

subfolders and files. Subfolders can also contain subfolders and so on until 

you reach certain max depth limit. 

The directory tree of the file system is accessible through the build in .NET 

functionality: the class System.IO.DirectoryInfo. It is not present as a data 

structure, but we can get the subfolders and files of every directory, so we 

can traverse the file system tree by using a standard tree traversal 

algorithm, such as Depth-First Search (DFS). 

Below we can see what the typical directory tree in Windows looks like: 

 

Recursive DFS Traversal of the Directories 

The next example illustrates how we can recursively traverse recursively 

the tree structure of given folder (using Depth-First-Search) and print on 

the standard output its content: 



Chapter 17. Trees and Graphs  691 

DirectoryTraverserDFS.cs 

using System; 

using System.IO; 
 
/// <summary> 

/// Sample class, which traverses recursively given directory 
/// based on the Depth-First-Search (DFS) algorithm 
/// </summary> 

public static class DirectoryTraverserDFS 
{ 

 /// <summary> 

 /// Traverses and prints given directory recursively 
 /// </summary> 
 /// <param name="dir">the directory to be traversed</param> 

 /// <param name="spaces">the spaces used for representation 
 /// of the parent-child relation</param> 
 private static void TraverseDir(DirectoryInfo dir, 

  string spaces) 
 { 
  // Visit the current directory 

  Console.WriteLine(spaces + dir.FullName); 
 
  DirectoryInfo[] children = dir.GetDirectories(); 

 
  // For each child go and visit its sub-tree 
  foreach (DirectoryInfo child in children) 

  { 
   TraverseDir(child, spaces + "  "); 
  } 

 } 

 
 /// <summary> 

 /// Traverses and prints given directory recursively 
 /// </summary> 
 /// <param name="directoryPath">the path to the directory 

 /// which should be traversed</param> 
 static void TraverseDir(string directoryPath) 
 { 

  TraverseDir(new DirectoryInfo(directoryPath), 
   string.Empty); 

 } 

 
 static void Main() 



692  Fundamentals of Computer Programming with C# 

 { 
  TraverseDir("C:\\"); 
 } 

} 

As we can see the recursive traversal algorithm of the content of the directory 

is the same as the one we used for our tree. 

Here we can see part of the result of the traversal: 

C:\ 

  C:\Config.Msi 
  C:\Documents and Settings 
    C:\Documents and Settings\Administrator 

      C:\Documents and Settings\Administrator\.ARIS70 
      C:\Documents and Settings\Administrator\.jindent 
      C:\Documents and Settings\Administrator\.nbi 

        C:\Documents and Settings\Administrator\.nbi\downloads 
        C:\Documents and Settings\Administrator\.nbi\log 
        C:\Documents and Settings\Administrator\.nbi\cache 

        C:\Documents and Settings\Administrator\.nbi\tmp 
        C:\Documents and Settings\Administrator\.nbi\wd 
      C:\Documents and Settings\Administrator\.netbeans 

        C:\Documents and Settings\Administrator\.netbeans\6.0 
… 

Note that the above program may crash with UnauthorizedAccessException 

in case you do not have access permissions for some folders on the hard disk. 

This is typical for some Windows installations so you could start the traversal 

from another directory to play with it, e.g. from "C:\Windows\assembly". 

Breath-First-Search (BFS) 

Let’s have a look at another way of traversing trees. Breath-First-Search 

(BFS) is an algorithm for traversing branched data structures (like trees and 

graphs). The BFS algorithm first traverses the start node, then all its direct 

children, then their direct children and so on. This approach is also known as 

the wavefront traversal, because it looks like the waves caused by a stone 

thrown into a lake. 

The Breath-First-Search (BFS) algorithm consists of the following steps: 

1. Enqueue the start node in queue Q. 

2. While Q is not empty repeat the following two steps: 

- Dequeue the next node v from Q and print it. 

- Add all children of v in the queue. 



Chapter 17. Trees and Graphs  693 

The BFS algorithm is very simple and always traverses first the nodes that 

are closest to the start node, and then the more distant and so on until it 

reaches the furthest. The BFS algorithm is very widely used in problem 

solving, e.g. for finding the shortest path in a labyrinth. 

A sample implementation of BFS algorithms that prints all folders in the 

file system is given below: 

DirectoryTraverserBFS.cs 

using System; 
using System.Collections.Generic; 

using System.IO; 
 
/// <summary> 

/// Sample class, which traverses given directory 
/// based on the Breath-First-Search (BFS) algorithm 
/// </summary> 

public static class DirectoryTraverserBFS 
{ 
 /// <summary> 

 /// Traverses and prints given directory with BFS 
 /// </summary> 
 /// <param name="directoryPath">the path to the directory  

 /// which should be traversed</param> 
 static void TraverseDir(string directoryPath) 
 { 

  Queue<DirectoryInfo> visitedDirsQueue = 
   new Queue<DirectoryInfo>(); 
  visitedDirsQueue.Enqueue(new DirectoryInfo(directoryPath)); 

  while (visitedDirsQueue.Count > 0) 
  { 

   DirectoryInfo currentDir = visitedDirsQueue.Dequeue(); 

   Console.WriteLine(currentDir.FullName); 
 
   DirectoryInfo[] children = currentDir.GetDirectories(); 

   foreach (DirectoryInfo child in children) 
   { 
    visitedDirsQueue.Enqueue(child); 

   } 
  } 
 } 

 

 static void Main() 
 { 

  TraverseDir(@"C:\"); 



694  Fundamentals of Computer Programming with C# 

 } 
} 

If we start the program to traverse our local hard disk, we will see that the 

BFS first visits the directories closest to the root (depth 1), then the folders at 

depth 2, then depth 3 and so on. Here is a sample output of the program: 

C:\ 
C:\Config.Msi 
C:\Documents and Settings 

C:\Inetpub 

C:\Program Files 
C:\RECYCLER 

C:\System Volume Information 
C:\WINDOWS 
C:\wmpub 

C:\Documents and Settings\Administrator 
C:\Documents and Settings\All Users 
C:\Documents and Settings\Default User 

… 

Binary Trees 

In the previous section we discussed the basic structure of a tree. In this 

section we will have a look at a specific type of tree – binary tree. This type 

of tree turns out to be very useful in programming. The terminology for trees 

is also valid about binary trees. Despite that below we will give some specific 

explanations about thus structure. 

Binary Tree – a tree, which nodes have a degree equal or less than 2 or 

we can say that it is a tree with branching degree of 2. Because every 

node’s children are at most 2, we call them left child and right child. They 

are the roots of the left sub-tree and the right sub-tree of their parent 

node. Some nodes may have only left or only right child, not both. Some 

nodes may have no children and are called leaves. 

Binary tree can be recursively defined as follows: a single node is a binary 

tree and can have left and right children which are also binary trees. 

Binary Tree – Example 

Here we have an example of binary tree. The nodes are again named with 

some numbers. An the figure we can see the root of the tree – "14", the left 

sub-tree (with root 19) and the right sub-tree (with root 15) and a right 

and left child – "3" and "21". 

 



Chapter 17. Trees and Graphs  695 

 

We have to note that there is one very big difference in the definition of 

binary tree from the definition of the classical tree – the order of the 

children of each node. The next example will illustrate that difference: 

 

On this figure above two totally different binary trees are illustrated – the 

first one has root "19" and its left child "23" and the second root "19" and 

right child "23". If that was an ordinary tree they would have been the 

same. That’s why such tree we would illustrate the following way: 

 

 

Remember! Although we take binary trees as a special case of 

a tree structure, we have to notice that the condition for 

particular order of children nodes makes them a completely 

different structure. 

Binary Tree Traversal 

The traversal of binary tree is a classic problem which has classical 

solutions. Generally there are few ways to traverse a binary tree recursively: 

10

17

159

6 5 8

Root node

Left subtree

Right child

Right child

Left child

19

23

19

23

19

23



696  Fundamentals of Computer Programming with C# 

- In-order (Left-Root-Right) – the traversal algorithm first traverses 

the left sub-tree, then the root and last the left sub-tree. In our example 

the sequence of such traversal is: "23", "19", "10", "6", "21", "14", "3", 

"15". 

- Pre-order (Root-Left-Right) – in this case the algorithm first 

traverses the root, then the left sub-tree and last the right sub-tree. The 

result of such traversal in our example is: "14", "19", "23", "6", "10", 

"21", "15", "3". 

- Post-order (Left-Right-Root) – here we first traverse the left sub-

tree, then the right one and last the root. The result after the traversal 

is: "23", "10", "21", "6", "19", "3", "15", "14". 

Recursive Traversal of Binary Tree – Example 

The next example shows an implementation of binary tree, which we will 

traverse using the in-order recursive scheme. 

using System; 
using System.Collections.Generic; 
 

/// <summary>Represents a binary tree</summary> 
/// <typeparam name="T">Type of values in the tree</typeparam> 
public class BinaryTree<T> 

{ 
 /// <summary>The value stored in the curent node</summary> 
 public T Value { get; set; } 

 
 /// <summary>The left child of the current node</summary> 
 public BinaryTree<T> LeftChild { get; private set; } 

 
 /// <summary>The right child of the current node</summary> 
 public BinaryTree<T> RightChild { get; private set; } 

  
 /// <summary>Constructs a binary tree</summary> 
 /// <param name="value">the value of the tree node</param> 

 /// <param name="leftChild">the left child of the tree</param> 
 /// <param name="rightChild">the right child of the tree 
 /// </param> 

 public BinaryTree(T value, 
  BinaryTree<T> leftChild, BinaryTree<T> rightChild) 
 { 

  this.Value = value; 

  this.LeftChild = leftChild; 
  this.RightChild = rightChild; 

 } 



Chapter 17. Trees and Graphs  697 

 
 /// <summary>Constructs a binary tree with no children 
 /// </summary> 

 /// <param name="value">the value of the tree node</param> 
 public BinaryTree(T value) : this(value, null, null) 
 { 

 } 
 
 /// <summary>Traverses the binary tree in pre-order</summary> 

 public void PrintInOrder() 
 { 

  // 1. Visit the left child 

  if (this.LeftChild != null) 
  { 
   this.LeftChild.PrintInOrder(); 

  } 
 
  // 2. Visit the root of this sub-tree 

  Console.Write(this.Value + " "); 
 
  // 3. Visit the right child 

  if (this.RightChild != null) 
  { 
   this.RightChild.PrintInOrder(); 

  } 
 } 
} 

 
/// <summary> 
/// Demonstrates how the BinaryTree<T> class can be used 

/// </summary> 

public class BinaryTreeExample 
{ 

 static void Main() 
 { 
  // Create the binary tree from the sample 

  BinaryTree<int> binaryTree = 
   new BinaryTree<int>(14, 
     new BinaryTree<int>(19, 

       new BinaryTree<int>(23), 
       new BinaryTree<int>(6, 

         new BinaryTree<int>(10), 

         new BinaryTree<int>(21))), 
     new BinaryTree<int>(15, 



698  Fundamentals of Computer Programming with C# 

       new BinaryTree<int>(3), 
       null)); 
 

  // Traverse and print the tree in in-order manner 
  binaryTree.PrintInOrder(); 
  Console.WriteLine(); 

 
  // Console output: 
  // 23 19 10 6 21 14 3 15 

 } 
} 

How Does the Example Work? 

This implementation of binary tree is slightly different from the one of the 

ordinary tree and is significantly simplified. 

We have a recursive class definition BinaryTree<T>, which holds a value 

and left and right child nodes which are of the same type BinaryTree<T>. 

We have exactly two child nodes (left and right) instead of list of children. 

The method PrintInOrder() works recursively using the DFS algorithm. It 

traverses each node in "in-order" (first the left child, then the node itself, then 

the right child). The DFS traversal algorithm performs the following steps: 

1. Recursive call to traverse the left sub-tree of the given node. 

2. Traverse the node itself (print its value). 

3. Recursive call to traverse the right sub-tree. 

We highly recommend the reader to try and modify the algorithm and the 

source code of the given example to implement the other types of binary tree 

traversal of binary (pre-order and post-order) and see the difference. 

Ordered Binary Search Trees 

Till this moment we have seen how we can build traditional and binary 

trees. These structures are very summarized in themselves and it will be 

difficult for us to use them for a bigger project. Practically, in computer 

science special and programming variants of binary and ordinary trees are 

used that have certain special characteristics, like order, minimal depth and 

others. Let's review the most important trees used in programming. 

As examples for a useful properties we can give the ability to quickly search of 

an element by given value (Red-Black tree); order of the elements in the 

tree (ordered search trees); balanced depth (balanced trees); possibility 

to store an ordered tree in a persistent storage so that searching of an 

element to be fast with as little as possible read operations (B-tree), etc. 



Chapter 17. Trees and Graphs  699 

In this chapter we will take a look at a more specific class of binary trees – 

ordered trees. They use one often met property of the nodes in the binary 

trees – unique identification key in every node. Important property of 

these keys is that they are comparable. Important kind of ordered trees are 

the so called "balanced search trees". 

Comparability between Objects 

Before continuing, we will introduce the following definition, which we will 

need for the further exposure. 

Comparability – we call two objects A and B comparable, if exactly one of 

following three dependencies exists: 

- "A is less than B" 

- "A is bigger than B" 

- "A is equal to B" 

Similarly we will call two keys A and B comparable, if exactly one of the 

following three possibilities is true: A < B, A > B or A = B. 

The nodes of a tree can contain different fields but we can think about only 

their unique keys, which we want to be comparable. Let’s give an example. 

We have two specific nodes A and B: 

 

In this case, the keys of A and B hold the integer numbers 19 and 7. From 

Mathematics we know that the integer numbers (unlike the complex numbers) 

are comparable, which according the above reasoning give us the right to 

use them as keys. That’s why we can say that “A is bigger than B”, because 

“м9 is bigger than м7”. 

 

Please notice! In this case the numbers depicted on the nodes 

are their unique identification keys and not like before, just 

some numbers. 

And we arrive to the definition of the ordered binary search tree: 

Ordered Binary Tree (binary search tree) is a binary tree, in which every 

node has a unique key, every two of the keys are comparable and the tree is 

organized in a way that for every node the following is satisfied: 

- All keys in the left sub-tree are smaller than its key. 

- All keys in the right sub-tree are bigger than its key. 

19 7

BA



700  Fundamentals of Computer Programming with C# 

Properties of the Ordered Binary Search Trees 

On the figure below we have given an example of an ordered binary 

search tree. We will use this example, to give some important properties of 

the binary tree’s order: 

 

By definition we know that the left sub-tree of every node consists only of 

elements, which are smaller than itself, while in the right sub-tree there 

are only bigger elements. This means that if we want to find a given 

element, starting from the root, either we have found it or should search it 

respectively in its left or its right sub-tree, which will save unnecessary 

comparisons. For example, if we search 23 in our tree, we are not going to 

search for it in the left sub-tree of 19, because 23 is not there for sure (23 is 

bigger than 19, so eventually it is in the right sub-tree). This saves us 5 

unnecessary comparisons with each of the left sub-tree elements, but if we 

were using a linked list, we would have to make these 5 comparisons. 

From the elements’ order follows that the smallest element in the tree is the 

leftmost successor of the root, if there is such or the root itself, if it does 

not have a left successor. In our example this is the minimal element 7 and 

the maximal – 35. Next useful property from this is, that every single element 

from the left sub-tree of given node is smaller than every single element from 

the right sub-tree of the same node. 

Ordered Binary Search Trees – Example 

The next example shows a simple implementation of a binary search tree. 

Our point is to suggest methods for adding, searching and removing an 

element in the tree. For every single operation from the above, we will give 

an explanation in details. Note that our binary search tree is not balanced 

and may have poor performance in certain circumstances. 



Chapter 17. Trees and Graphs  701 

Ordered Binary Search Trees: Implementation of the Nodes 

Just like before, now we will define an internal class, which will describe a 

node’s structure. Thus we will clearly distinguish and encapsulate the 

structure of a node, which our tree will contain within itself. This separate 

class BinaryTreeNode<T> that we have defined as internal is visible only in 

the ordered tree’s class. 

Here is its definition: 

BinaryTreeNode.cs 

… 
/// <summary>Represents a binary tree node</summary> 
/// <typeparam name="T">Specifies the type for the values 
/// in the nodes</typeparam> 

internal class BinaryTreeNode<T> : 
 IComparable<BinaryTreeNode<T>> where T : IComparable<T> 
{ 

 // Contains the value of the node 
 internal T value; 
 

 // Contains the parent of the node 
 internal BinaryTreeNode<T> parent; 
 

 // Contains the left child of the node 
 internal BinaryTreeNode<T> leftChild; 
 

 // Contains the right child of the node 
 internal BinaryTreeNode<T> rightChild; 
 

 /// <summary>Constructs the tree node</summary> 
 /// <param name="value">The value of the tree node</param> 

 public BinaryTreeNode(T value) 

 { 
  if (value == null) 
  { 

   // Null values cannot be compared -> do not allow them 
   throw new ArgumentNullException( 
    "Cannot insert null value!"); 

  } 
 
  this.value = value; 

  this.parent = null; 
  this.leftChild = null; 
  this.rightChild = null; 



702  Fundamentals of Computer Programming with C# 

 } 
 
 public override string ToString() 

 { 
  return this.value.ToString(); 
 } 

 
 public override int GetHashCode() 
 { 

  return this.value.GetHashCode(); 
 } 

 

 public override bool Equals(object obj) 
 { 
  BinaryTreeNode<T> other = (BinaryTreeNode<T>)obj; 

  return this.CompareTo(other) == 0; 
 } 
 

 public int CompareTo(BinaryTreeNode<T> other) 
 { 
  return this.value.CompareTo(other.value); 

 } 
} 
… 

Let’s have a look to the proposed code. Still in the name of the structure, 

which we are considering – “ordered search tree”, we are talking about 
order and we can achieve this order only if we have comparability among 

the elements in the tree. 

Comparability between Objects in C# 

What does “comparability between objects” mean for us as developers? It 
means that we must somehow oblige everyone who uses our data structure, 

to create it passing it a type, which is comparable. 

In C# the sentence “type, which is comparable” will sound like this: 

T : IComparable<T> 

The interface IComparable<T>, located in the namespace System, specifies 

the method CompareTo(T obj), which returns a negative integer number, 

zero or a positive integer number respectively if the current object is less, 

equal or bigger than the one which is given to the method for comparing. Its 

definition looks approximately like this: 



Chapter 17. Trees and Graphs  703 

public interface IComparable<T> 
{ 
 /// <summary>Compares the current object with another 

 /// object of the same type.</summary> 
 int CompareTo(T other); 
} 

On one hand, the implementation of this interface by given class ensures us 

that its instances are comparable (more about interfaces in OOP can be found 

in the "Interfaces" section of the "Defining Classes" chapter). 

On the other hand, we need those nodes, described by BinaryTreeNode<T> 

class to be comparable between them too. That is why it implements 

IComparable<T> too. As it is shown in the code, the implementation of 

IComparable<T> to the BinaryTreeNode<T> class calls the type T’s 

implementation internally. 

In the code we have also implemented the methods Equals(Object obj) and 

GetHashCode() too. A good (recommended) practice is these two methods to 

be consistent in their behavior, i.e. when two objects are the same, then their 

hash-code is the same. As we will see in the chapter about hash tables, the 

opposite is not necessary at all. Similarly – the expected behavior of the 

Equals(Object obj) is to return true, exactly when CompareTo(T obj) 

returns 0. 

 

It’s recommended to sync the work of Equals(Object obj), 

CompareTo(T obj) and GetHashCode() methods. This is their 

expected behavior and it will save you a lot of hard to find 

problems. 

Till now, we have discussed the methods, suggested by our class. Now let’s 
see what fields it provides. They are respectively for value (the key) of type T 

parent – parent, left and right successor – leftChild and rightChild. The 

last three are of the type of the defining them class – BinaryTreeNode 

Ordered Binary Trees – Implementation of the Main Class 

Now, we go to the implementation of the class, describing an ordered binary 

tree – BinarySearchTree<T>. The tree by itself as a structure consists of a 

root node of type BinaryTreeNode<T>, which contains internally its 

successors – left and right. Internally they also contain their successors, thus 

recursively down until it reaches the leaves. 

An important thing is the definition BinarySearchTree<T> where T : 

IComparable<T>. This constraint of the type T is necessary because of the 

requirement of our internal class, which works only with types, implementing 

IComparable<T>. Due to this restriction we can use BinarySearchTree<int> 

and BinarySearchTree<string>, but cannot use BinarySearchTree<int[]> 



704  Fundamentals of Computer Programming with C# 

and BinarySearchTree<StreamReader>, because int[] and StreamReader 

are not comparable, while int and string are. 

BinarySearchTree.cs 

public class BinarySearchTree<T> where T : IComparable<T> 
{ 

 /// <summary> 
 /// Represents a binary tree node 
 /// </summary> 

 /// <typeparam name="T">The type of the nodes</typeparam> 

 internal class BinaryTreeNode<T> : 
  IComparable<BinaryTreeNode<T>> where T : IComparable<T> 

 { 
  // … 
  // … The implementation from above comes here!!! … 
  // … 
 } 
 

 /// <summary> 
 /// The root of the tree 
 /// </summary> 

 private BinaryTreeNode<T> root; 
 
 /// <summary> 

 /// Constructs the tree 
 /// </summary> 
 public BinarySearchTree() 

 { 
  this.root = null; 
 } 

 
 // … 
 // … The implementation of tree operations come here!!! … 
 // … 
} 

As we mentioned above, now we will examine the following operations: 

- insert an element; 

- searching for an element; 

- removing an element. 



Chapter 17. Trees and Graphs  705 

Inserting an Element 

Inserting (or adding) an element in a binary search tree means to put a 

new element somewhere in the tree so that the tree must stay ordered. 

Here is the algorithm: if the tree is empty, we add the new element as a root. 

Otherwise: 

- If the element is smaller than the root, we call recursively the same 

method to add the element in the left sub-tree. 

- If the element is bigger than the root, we call recursively to the same 

method to add the element in the right sub-tree. 

- If the element is equal to the root, we don’t do anything and exit from 

the recursion. 

We can clearly see how the algorithm for inserting a node, conforms to the 

rule “elements in the left sub-tree are less than the root and the elements in 

the right sub-tree are bigger than the root”. Here is a sample implementation 

of this method. You should notice that in the addition there is a reference to 

the parent, which is supported because the parent must be changed too. 

/// <summary>Inserts new value in the binary search tree 
/// </summary> 

/// <param name="value">the value to be inserted</param> 
public void Insert(T value) 
{ 

 this.root = Insert(value, null, root); 
} 
 

/// <summary> 
/// Inserts node in the binary search tree by given value 
/// </summary> 

/// <param name="value">the new value</param> 
/// <param name="parentNode">the parent of the new node</param> 

/// <param name="node">current node</param> 

/// <returns>the inserted node</returns> 
private BinaryTreeNode<T> Insert(T value, 
  BinaryTreeNode<T> parentNode, BinaryTreeNode<T> node) 

{ 
 if (node == null) 
 { 

  node = new BinaryTreeNode<T>(value); 
  node.parent = parentNode; 
 } 

 else 
 { 
  int compareTo = value.CompareTo(node.value); 



706  Fundamentals of Computer Programming with C# 

  if (compareTo < 0) 
  { 
   node.leftChild = 

    Insert(value, node, node.leftChild); 
  } 
  else if (compareTo > 0) 

  { 
   node.rightChild = 
    Insert(value, node, node.rightChild); 

  } 
 } 

 

 return node; 
} 

Searching for an Element 

Searching in a binary search tree is an operation which is more intuitive. In 

the sample code we have shown how the search of an element can be done 

without recursion and with iteration instead. The algorithm starts with 

element node, pointing to the root. After that we do the following: 

- If the element is equal to node, we have found the searched element 

and return it. 

- If the element is smaller than node, we assign to node its left 

successor, i.e. we continue the searching in the left sub-tree. 

- If the element is bigger than node, we assign to node its right 

successor, i.e. we continue the searching in the right sub-tree. 

At the end, the algorithm returns the found node or null if there is no 

such node in the tree. Additionally we define a Boolean method that checks if 

certain value belongs to the tree. Here is the sample code: 

/// <summary>Finds a given value in the tree and 
/// return the node which contains it if such exsists 

/// </summary> 
/// <param name="value">the value to be found</param> 
/// <returns>the found node or null if not found</returns> 

private BinaryTreeNode<T> Find(T value) 
{ 
 BinaryTreeNode<T> node = this.root; 

 while (node != null) 

 { 
  int compareTo = value.CompareTo(node.value); 

  if (compareTo < 0) 



Chapter 17. Trees and Graphs  707 

  { 
   node = node.leftChild; 
  } 

  else if (compareTo > 0) 
  { 
   node = node.rightChild; 

  } 
  else 
  { 

   break; 
  } 

 } 

 
 return node; 
} 

 
/// <summary>Returns whether given value exists in the tree 
/// </summary> 

/// <param name="value">the value to be checked</param> 
/// <returns>true if the value is found in the tree</returns> 
public bool Contains(T value) 

{ 
 bool found = this.Find(value) != null; 
 return found; 

} 

Removing an Element 

Removing is the most complicated operation from the basic binary 

search tree operations. After it the tree must keep its order. 

The first step before we remove an element from the tree is to find it. We 

already know how it happens. After that, we have 3 cases: 

- If the node is a leaf – we point its parent’s reference to null. If the 

element has no parent, it means that it is a root and we just remove it. 

- If the node has only one sub-tree – left or right, it is replacing with 

the root of this sub-tree. 

- The node has two sub-trees. Then we have to find the smallest node 

in the right sub-tree and swap with it. After this exchange the node will 

have one sub-tree at most and then we remove it grounded on some of 

the above two rules. Here we have to say that it can be done analogical 

swap, just that we get the left sub-tree and it is the biggest element. 

We leave to the reader to check the correctness of these three steps, as a 

little exercise. 



708  Fundamentals of Computer Programming with C# 

Now, let’s see a sample removal in action. Again we will use our ordered 

tree, which we have displayed at the beginning of this point. For example, 

let’s remove the element with key 11. 

 

The node 11 has two sub-trees and according to our algorithm, it must be 

exchanged with the smallest element from the right sub-tree, i.e. with 13. 

After the exchange, we can remove 11 (it is a leaf). Here is the final result: 

 

Below is the sample code, which implements the described algorithm: 

1313 35

237 16

19

1111 17



Chapter 17. Trees and Graphs  709 

/// <summary>Removes an element from the tree if exists 
/// </summary> 
/// <param name="value">the value to be deleted</param> 

public void Remove(T value) 
{ 
 BinaryTreeNode<T> nodeToDelete = Find(value); 

 if (nodeToDelete != null) 
 { 
  Remove(nodeToDelete); 

 } 
} 

 

private void Remove(BinaryTreeNode<T> node) 
{ 
 // Case 3: If the node has two children. 

 // Note that if we get here at the end 
 // the node will be with at most one child 
 if (node.leftChild != null && node.rightChild != null) 

 { 
  BinaryTreeNode<T> replacement = node.rightChild; 
  while (replacement.leftChild != null) 

  { 
   replacement = replacement.leftChild; 
  } 

  node.value = replacement.value; 
  node = replacement; 
 } 

 
 // Case 1 and 2: If the node has at most one child 
 BinaryTreeNode<T> theChild = node.leftChild != null ? 

   node.leftChild : node.rightChild; 

 
 // If the element to be deleted has one child 

 if (theChild != null) 
 { 
  theChild.parent = node.parent; 

 
  // Handle the case when the element is the root 
  if (node.parent == null) 

  { 
   root = theChild; 

  } 

  else 
  { 



710  Fundamentals of Computer Programming with C# 

   // Replace the element with its child sub-tree 
   if (node.parent.leftChild == node) 
   { 

    node.parent.leftChild = theChild; 
   } 
   else 

   { 
    node.parent.rightChild = theChild; 
   } 

  } 
 } 

 else 

 { 
  // Handle the case when the element is the root 
  if (node.parent == null) 

  { 
   root = null; 
  } 

  else 
  { 
   // Remove the element - it is a leaf 

   if (node.parent.leftChild == node) 
   { 
    node.parent.leftChild = null; 

   } 
   else 
   { 

    node.parent.rightChild = null; 
   } 
  } 

 } 

} 

We add also a DFS traversal method to enable printing the values stored in 

the tree in ascending order (in-order): 

/// <summary>Traverses and prints the tree</summary> 

public void PrintTreeDFS() 
{ 
 PrintTreeDFS(this.root); 

 Console.WriteLine(); 

} 
 

/// <summary>Traverses and prints the ordered binary search tree 



Chapter 17. Trees and Graphs  711 

/// tree starting from given root node.</summary> 
/// <param name="node">the starting node</param> 
private void PrintTreeDFS(BinaryTreeNode<T> node) 

{ 
 if (node != null) 
 { 

  PrintTreeDFS(node.leftChild); 
  Console.Write(node.value + " "); 
  PrintTreeDFS(node.rightChild); 

 } 
} 

Finally we demonstrate our ordered binary search tree in action: 

class BinarySearchTreeExample 
{ 

 static void Main() 
 { 
  BinarySearchTree<string> tree = 

   new BinarySearchTree<string>(); 
  tree.Insert("Telerik"); 
  tree.Insert("Google"); 

  tree.Insert("Microsoft"); 
  tree.PrintTreeDFS(); // Google Microsoft Telerik 
  Console.WriteLine(tree.Contains("Telerik")); // True 

  Console.WriteLine(tree.Contains("IBM")); // False 
  tree.Remove("Telerik"); 
  Console.WriteLine(tree.Contains("Telerik")); // False 

  tree.PrintTreeDFS(); // Google Microsoft 
 } 
} 

Note that when we print our binary search tree, it is always sorted in 

ascending order (in our case in alphabetical order). Thus in our example the 

binary search tree of strings behaves like a set of strings (we will explain the 

"Set" data structure in the chapter "Dictionaries, Hash Tables and Sets"). 

It is important to know that our class BinarySearchTree<T> implements a 

binary search tree, but not balanced / self-balancing binary search tree. 

Although it works correctly, its performance can be poor in certain 

circumstances, like we shall explain in the next section. Balanced trees are 

more complex concept and use more complex algorithm which guarantees 

their balanced depth. Let’s take a look at them. 



712  Fundamentals of Computer Programming with C# 

Balanced Trees 

As we have seen above, the ordered binary trees are a very comfortable 

structure to search within. Defined in this way, the operations for creating and 

deleting the tree have a hidden flaw: they don't balance the tree and its 

depth could become very big. 

Think a bit what will happen if we sequentially include the elements: 1, 2, 3, 

4, 5, 6? The ordered binary tree will look like this: 

 

In this case, the binary tree degenerates into a linked list. Because of 

this the searching in this tree is going to be much slower (with N steps, not 

with log(N)), as to check whether an item is inside, in the worst case we will 

have to go through all elements. 

We will briefly mention the existence of data structures, which save the 

logarithmic behavior of the operations adding, searching and removing an 

element in the common case. We will introduce to you the following 

definitions before we go on to explain how they are achieved: 

Balanced binary tree – a binary tree in which no leaf is at “much 
greater” depth than any other leaf. The definition of “much greater” is 

rough depends on the specific balancing scheme. 

Perfectly balanced binary tree – binary tree in which the difference in the 

left and right tree nodes’ count of any node is at most one. 

Without going in details we will mention that when given binary search tree 

is balanced, even not perfectly balanced, then the operations of adding, 

searching and removing an element in it will run in approximately a 

logarithmic number of steps even in the worst case. To avoid imbalance in 

the tree to search, apply operations that rearrange some elements of the tree 

when adding or removing an item from it. These operations are called 

rotations in most of the cases. The type of rotation should be further 

specified and depends on the implementation of the specific data structure. As 

examples for structures like these we can give Red-Black tree, AVL-tree, 

AA-tree, Splay-tree and others. 

1

2

3

4

5

6



Chapter 17. Trees and Graphs  713 

Balanced search trees allow quickly (in general case for approximately 

log(n) number of steps) to perform the operations like searching, adding 

and deleting of elements. This is due to two main reasons: 

- Balanced search trees keep their elements ordered internally. 

- Balanced search trees keep themselves balanced, i.e. their depth is 

always in order of log(n). 

Due to their importance in computer science we will talk about balanced 

search trees and their standard implementations in .NET Framework many 

times when we discuss data structures and their performance in this chapter 

and in the next few chapters. 

Balanced search trees can be binary or non-binary. 

Balanced binary search trees have multiple implementations like Red-

Black Trees, AA Trees and AVL Trees. All of them are ordered, balanced 

and binary, so they perform insert / search / delete operations very fast. 

Non-binary balanced search trees also have multiple implementations with 

different special properties. Examples are B-Trees, B+ Trees and Interval 

Trees. All of them are ordered, balanced, but not binary. Their nodes can 

typically hold more than one key and can have more than two child nodes. 

These trees also perform operations like insert / search / delete very fast. 

For a more detailed examination of these and other structures we recommend 

the reader to look closely at literature about algorithms and data structures. 

The Hidden Class TreeSet<T> in .NET Framework 

Once we have seen ordered binary trees and seen what their advantage is 

comes the time to show and what C# has ready for us concerning them. 

Perhaps each of you secretly hoped that he / she will never have to 

implement a balanced ordered binary search tree, because it looks quite 

complicated. 

So far we have looked at what balanced trees are to get an idea about them. 

When you need to use them, you can always count on getting them from 

somewhere already implemented. In the standard libraries of the .NET 

Framework there are ready implementations of balanced trees, but also on 

the Internet you can find a lot of external libraries. 

In the namespace System.Collections.Generic a class TreeSet<T> exists, 

which is an implementation of a red-black tree. This, as we know, means 

that adding, searching and deleting items in the tree will be made with 

logarithmic complexity (i.e. if we have one million items operation will be 

performed for about 20 steps). The bad news is that this class is internal 

and it is visible only in this library. Fortunately, this class is used internally by 

a class, which is publicly available – SortedDictionary<T>. More info about 

the SortedDictionary<T> class you can find in the section "Sets" of chapter 

"Dictionaries, Hash-Tables and Sets". 



714  Fundamentals of Computer Programming with C# 

Graphs 

The graphs are very useful and fairly common data structures. They are used 

to describe a wide variety of relationships between objects and in practice 

can be related to almost everything. As we will see later, trees are a subset of 

the graphs and also lists are special cases of trees and thus of graphs, i.e. the 

graphs represent a generalized structure that allows modeling of very large 

set of real-world situations. 

Frequent use of graphs in practice has led to extensive research in "graph 

theory", in which there is a large number of known problems for graphs and 

for most of them there are well-known solutions. 

Graphs – Basic Concepts 

In this section we will introduce some of the important concepts and 

definitions. Some of them are similar to those introduced about the tree data 

structure, but as we shall see, there are very serious differences, because 

trees are just special cases of graphs. 

Let’s consider the following sample graph (which we would later call a finite 

and oriented). Again, like with trees, we have numbered the graph, as it is 

easier to talk about any of them specifically: 

 

The circles of this scheme we will call vertices (nodes) and the arrows 

connecting them we will call directed edges. The vertex of which the arrow 

comes out we will call predecessor of that the arrow points. For example 

“м9” is a predecessor of “м”. In this case, “м” is a successor of “м9”. Unlike 
the structure tree, here each vertex can have more than one predecessor. 

Like “2м”, it has three – “м9”, “м” and “7”. If two of the vertices are connected 
with edge, then we say these two vertices are adjacent through this edge. 



Chapter 17. Trees and Graphs  715 

Next follows the definition of finite directed graph. 

Finite directed graph is called the couple (V, E), in which V is a finite set of 

vertices and E is a finite set of directed edges. Each edge e that belongs to 

E is an ordered couple of vertices u and v or e = (u, v), which are defining it 

in a unique way. 

For better understanding of this definition we are strongly recommending to 

the reader to think of the vertices as they are cities, and the directed edges 

as one-way roads. That way, if one of the vertices is Sofia and the other is 

Paris, the one-way path (edge) will be called Sofia – Paris. In fact this is one 

of the classic examples for the use of the graphs – in tasks with paths. 

If instead of arrows, the vertices are connected with segments, then the 

segments will be called undirected edges, and the graph – undirected. 

Practically we can imagine that an undirected edge from vertex A to vertex B 

is two-way edge and equivalent to two opposite directed edges between the 

same two vertices: 

 

Two vertices connected with an edge are called neighbors (adjacent). 

For the edges a weight function can be assigned, that associates each edge 

to a real number. These numbers we will call weights (costs). For examples 

of the weights we can mention some distance between neighboring cities, or 

the length of the directed connections between two neighboring cities, or the 

crossing function of a pipe, etc. A graph that has weights on the edges is 

called weighted. Here is how it is illustrated a weighted graph. 

 

A B

A B

7

19

21

14

1

12
31

67

3

3

16

2

4

12
13

14

23

0



716  Fundamentals of Computer Programming with C# 

Path in a graph is a sequence of vertices v1, v2, …, vn,, such as there is an 

edge from vi to vi+1 for every i from 1 to n-1. In our example path is the 

sequence "1", "12", "19", "21". "7", "21" and "1" is not a path because there 

is no edge starting from "21" and ending in "1". 

Length of path is the number of edges connecting vertices in the sequence 

of the vertices in the path. This number is equal to the number of vertices in 

the path minus one. The length of our example for path "1", "12", "19", "21" 

is three. 

Cost of path in a weighted graph, we call the sum of the weights (costs) of 

the edges involved in the path. In real life the road from Sofia to Madrid, for 

example, is equal to the length of the road from Sofia to Paris plus the length 

of the road from Madrid to Paris. In our example, the length of the path "1", 

"12", "19" and "21" is equal to 3 + 16 + 2 = 21. 

Loop is a path in which the initial and the final vertex of the path match. 

Example of vertices forming loop are "1", "12" and "19". In the same time 

"1", "7" and "21" do not form a loop. 

Looping edge we will call an edge, which starts and ends in the same vertex. 

In our example the vertex "14" is looped. 

A connected undirected graph we call an undirected graph in which there 

is a path from each node to each other. For example, the following graph is 

not connected because there is no path from "1" to "7". 

 

So we already have enough knowledge to define the concept tree in other 

way, as a special kind of graph: 

Tree – undirected connected graph without loops. 

As a small exercise we let the reader show why all definitions of tree we gave 

in this chapter are equivalent. 

Graphs – Presentations 

There are a lot of different ways to present a graph in the computer 

programming. Different representations have different properties and what 

exactly should be selected depends on the particular algorithm that we want 

to apply. In other words – we present the graph in a way, so that the 

1 2

13 7

31



Chapter 17. Trees and Graphs  717 

operations that our algorithm does on it to be as fast as possible. Without 

falling into greater details we will set out some of the most common 

representations of graphs. 

- List of successors – in this representation for each vertex v a list of 

successor vertices is kept (like the tree’s child nodes). Here again, if the 
graph is weighted, then to each element of the list of successors an 

additional field is added indicating the weight of the edge to it. 

- Adjacency matrix – the graph is represented as a square matrix 

g[N][N], where if there is an edge from vi to vj, then the position 

g[i][j] is contains the value 1. If such an edge does not exist, the field 

g[i][j] is contains the value 0. If the graph is weighted, in the position 

g[i][j] we record weight of the edge, and matrix is called a matrix of 

weights. If between two nodes in this matrix there is no edge, then it is 

recorded a special value meaning infinity. If the graph is undirected, the 

adjacency matrix will be symmetrical. 

- List of the edges – it is represented through the list of ordered pairs 

(vi, vj), where there is an edge from vi to vj. If the graph is weighted, 

instead ordered pair we have ordered triple, and its third element shows 

what the weight of the edge is. 

- Matrix of incidence between vertices and edges – in this case, 

again we are using a matrix but with dimensions g[M][N], where N is 

the number of vertices, and M is the number of edges. Each column 

represents one edge, and each row a vertex. Then the column 

corresponding to the edge (vi, vj) will contain 1 only at position i and 

position j, and other items in this column will contain 0. If the edge is a 

loop, i.e. is (vi, vi), then on position i we record 2. If the graph we want 

to represent is oriented and we want to introduce edge from vi to vj, 

then to position i we write 1 and to the position j we write -1. 

The most commonly used representation of graphs is the list of successors. 

Graphs – Basic Operations 

The basic operations in a graph are: 

- Creating a graph 

- Adding / removing a vertex / edge 

- Check whether an edge exists between two vertices 

- Finding the successors of given vertex 

We will offer a sample implementation of the graph representation with 

a list of successors and we will show how to perform most of the 

operations. This kind of implementation is good when the most often 

operation we need is to get the list of all successors (child nodes) for a certain 

vertex. This graph representation needs a memory of order N + M where N 

is the number of vertices and M is the number of edges in the graph. 



718  Fundamentals of Computer Programming with C# 

In essence the vertices are numbered from 0 to N-1 and our Graph class holds 

for each vertex a list of the numbers of all its child vertices. It does not work 

with the nodes, but with their numbers in the range [0...N-м]. Let’s explore 
the source code of our sample graph: 

using System; 
using System.Collections.Generic; 
 

/// <summary>Represents a directed unweighted graph structure 
/// </summary> 
public class Graph 

{ 
 // Contains the child nodes for each vertex of the graph 
 // assuming that the vertices are numbered 0 ... Size-1 

 private List<int>[] childNodes; 
 
 /// <summary>Constructs an empty graph of given size</summary> 

 /// <param name="size">number of vertices</param> 
 public Graph(int size) 
 { 

  this.childNodes = new List<int>[size]; 
  for (int i = 0; i < size; i++) 
  { 

   // Assing an empty list of adjacents for each vertex 
   this.childNodes[i] = new List<int>(); 
  } 

 } 
 
 /// <summary>Constructs a graph by given list of 

 /// child nodes (successors) for each vertex</summary> 
 /// <param name="childNodes">children for each node</param> 
 public Graph(List<int>[] childNodes) 

 { 
  this.childNodes = childNodes; 
 } 

 
 /// <summary> 
 /// Returns the size of the graph (number of vertices) 

 /// </summary> 
 public int Size 
 { 

  get { return this.childNodes.Length; } 

 } 
 

 /// <summary>Adds new edge from u to v</summary> 



Chapter 17. Trees and Graphs  719 

 /// <param name="u">the starting vertex</param> 
 /// <param name="v">the ending vertex</param> 
 public void AddEdge(int u, int v) 

 { 
  childNodes[u].Add(v); 
 } 

 
 /// <summary>Removes the edge from u to v if such exists 
 /// </summary> 

 /// <param name="u">the starting vertex</param> 
 /// <param name="v">the ending vertex</param> 

 public void RemoveEdge(int u, int v) 

 { 
  childNodes[u].Remove(v); 
 } 

 
 /// <summary> 
 /// Checks whether there is an edge between vertex u and v 

 /// </summary> 
 /// <param name="u">the starting vertex</param> 
 /// <param name="v">the ending vertex</param> 

 /// <returns>true if there is an edge between 
 /// vertex u and vertex v</returns> 
 public bool HasEdge(int u, int v) 

 { 
  bool hasEdge = childNodes[u].Contains(v); 
  return hasEdge; 

 } 
 
 /// <summary>Returns the successors of a given vertex 

 /// </summary> 

 /// <param name="v">the vertex</param> 
 /// <returns>list of all successors of vertex v</returns> 

 public IList<int> GetSuccessors(int v) 
 { 
  return childNodes[v]; 

 } 
} 

To illustrate how our graph data structure works, we will create small 

program that creates a graph and traverses it by the DFS algorithm. To 

play a bit with graphs, the goal of our graph traversal algorithm will be to 

count how many connected components the graph has. 

By definition in undirected graph if a path exists between two nodes, they 

belong to the same connected component and if no path exists between 



720  Fundamentals of Computer Programming with C# 

two nodes, they belong to different connected components. For example 

consider the following undirected graph: 

 

It has 3 connected components: {0, 4}, {1, 2, 6, 3} and {5}. 

The code below creates a graph corresponding to the figure above and by 

DFS traversal finds all its connected components. This is straightforward: 

pass through all vertices and once unvisited vertex is found, all connected to 

it vertices (directly or indirectly via some a path) are found by DFS traversal, 

each of them is printed and marked as visited. Below is the code: 

class GraphComponents 
{ 
 static Graph graph = new Graph(new List<int>[] { 

  new List<int>() {4},       // successors of vertice 0 
  new List<int>() {1, 2, 6}, // successors of vertice 1 
  new List<int>() {1, 6},    // successors of vertice 2 

  new List<int>() {6},       // successors of vertice 3 
  new List<int>() {0},       // successors of vertice 4 
  new List<int>() {},        // successors of vertice 5 

  new List<int>() {1, 2, 3}  // successors of vertice 6 
 }); 
 

 static bool[] visited = new bool[graph.Size]; 
 
 static void TraverseDFS(int v) 

 { 

  if (!visited[v]) 
  { 

   Console.Write(v + " "); 
   visited[v] = true; 
   foreach (int child in graph.GetSuccessors(v)) 

   { 
    TraverseDFS(child); 
   } 

  } 
 } 

 

 static void Main() 
 { 

2

63

0 4

1

5



Chapter 17. Trees and Graphs  721 

  Console.WriteLine("Connected graph components: "); 
  for (int v = 0; v < graph.Size; v++) 
  { 

   if (!visited[v]) 
   { 
    TraverseDFS(v); 

    Console.WriteLine(); 
   } 
  } 

 } 
} 

If we run the above code, we will get the following output (the connected 

components of our sample graph shown above): 

Connected graph components: 

0 4 
1 2 6 3 
5 

Common Graph Applications 

Graphs are used to model many situations of reality, and tasks on graphs 

model multiple real problems that often need to be resolved. We will give just 

a few examples: 

- Map of a city can be modeled by a weighted oriented graph. On 

each street, edge is compared with a length, corresponding to the length 

of the street, and direction – the direction of movement. If the street is 

a two-way, it can be compared to two edges in both directions. At each 

intersection there is a node. In such a model there are natural tasks 

such as searching for the shortest path between two intersections, 

checking whether there is a road between two intersections, checking 

for a loop (if we can turn and go back to the starting position) searching 

for a path with a minimum number of turns, etc. 

- Computer network can be modeled by an undirected graph, whose 

vertices correspond to the computers in the network, and the edges 

correspond to the communication channels between the computers. To 

the edges different numbers can be compared, such as channel capacity 

or speed of the exchange, etc. Typical tasks for such models of a 

network are checking for connectivity between two computers, 

checking for double-connectivity between two points (existence of 

double-secured channel, which remains active after the failure of any 

computer), finding a minimal spanning tree (MST), etc. In particular, 

the Internet can be modeled as a graph, in which are solved 



722  Fundamentals of Computer Programming with C# 

problems for routing packets, which are modeled as classical graph 

problems. 

- The river system in a given region can be modeled by a weighted 

directed graph, where each river is composed of one or more edges, 

and each node represents the place where two or more rivers flow into 

another one. On the edges can be set values, related to the amount of 

water that goes through them. Naturally with this model there are tasks 

such as calculating the volume of water, passing through each vertex 

and anticipate of possible flood in increasing quantities. 

You can see that the graphs can be used to solve many real-world 

problems. Hundreds of books and research papers are written about graphs, 

graph theory and graph algorithms. There are dozens of classic tasks for 

graphs, for which there are known solutions or it is known that there is no 

efficient solution. The scope of this chapter does not allow mentioning all of 

them, but we hope that through the short presentation we have awaken your 

interest in graphs, graph algorithms and their applications and spur you 

to take enough time to solve the tasks about graphs in the exercises. 

Exercises 

1. Write a program that finds the number of occurrences of a number 

in a tree of numbers. 

2. Write a program that displays the roots of those sub-trees of a tree, 

which have exactly k nodes, where k is an integer. 

3. Write a program that finds the number of leaves and number of 

internal vertices of a tree. 

4. Write a program that finds in a binary tree of numbers the sum of the 

vertices of each level of the tree. 

5. Write a program that finds and prints all vertices of a binary tree, 

which have for only leaves successors. 

6. Write a program that checks whether a binary tree is perfectly 

balanced. 

7. Let’s have as given a graph G(V, E) and two of its vertices x and y. 

Write a program that finds the shortest path between two vertices 

measured in number of vertices staying on the path. 

8. Let’s have as given a graph G(V, E). Write a program that checks 

whether the graph is cyclic. 

9. Implement a recursive traversal in depth in an undirected graph and a 

program to test it. 

10. Write breadth first search (BFS), based on a queue, to traverse a 

directed graph. 



Chapter 17. Trees and Graphs  723 

11. Write a program that searches the directory C:\Windows\ and all its 

subdirectories recursively and prints all the files which have extension 

*.exe. 

12. Define classes File {string name, int size} and Folder {string 

name, File[] files, Folder[] childFolders}. Using these classes, 

build a tree that contains all files and directories on your hard disk, 

starting from C:\Windows\. Write a method that calculates the sum of 

the sizes of files in a sub-tree and a program that tests this method. To 

crawl the directories use recursively crawl depth (DFS). 

13. * Write a program that finds all loops in a directed graph. 

14. Let’s have as given a graph G (V, E). Write a program that finds all 

connected components of the graph, i.e. finds all maximal connected 

sub-graphs. A maximal connected sub-graph of G is a connected graph 

such that no other connected sub-graphs of G, contains it. 

15. Suppose we are given a weighted oriented graph G (V, E), in which 

the weights on the side are nonnegative numbers. Write a program that 

by a given vertex x from the graph finds the shortest paths from it to 

all other vertical. 

16. We have N tasks to be performed successively. We are given a list of 

pairs of tasks for which the second is dependent on the outcome of the 

first and should be executed after it. Write a program that arranges 

tasks in such a way that each task is be performed after all the tasks 

which it depends on have been completed. If no such order exists print 

an appropriate message. 

Example: {1, 2}, {2, 5}, {2, 4}, {3, 1}  3, 1, 2, 5, 4 

17. An Eulerian cycle in a graph is called a loop that starts from a vertex, 

passes exactly once through all edges in the graph returns to the starting 

vertex. Vertices can be visited repeatedly. Write a program that by a 

given graph, finds whether the graph has an Euler loop. 

18. A Hamiltonian cycle in a graph is a cycle containing every vertex in the 

graph exactly once. Write a program, which by given weighted oriented 

graph G (V, E), finds Hamiltonian loop with a minimum length, if 

such exists. 

Solutions and Guidelines 

1. Traverse the tree recursively in depth (using DFS) and count the 

occurrences of the given number. 

2. Traverse the tree recursively in depth (using DFS) and check for each 

node the given condition. For each node the number of nodes in its 

subtree is: 1 + the sum of the nodes of each of its child subtrees. 

3. You can solve the problem by traversing the tree in depth recursively. 



724  Fundamentals of Computer Programming with C# 

4. Use traversing in depth or breadth and when shifting from one node 

to another keep its level (depth). Knowing the levels of the nodes at 

each step, the wanted amount can be easily calculated. 

5. You can solve the problem by recursively traversing the tree in depth 

and by checking the given condition. 

6. By recursive traversal in depth (DFS) for every node of the tree 

calculate the depths of its left and right sub-trees. Then check 

immediately whether the condition of the definition for perfectly balanced 

tree is executed (check the difference between the left and right sub-

tree’s depths). 

7. Use the algorithm of traversing in breadth (BFS) as a base. In the 

queue put every node always along with its predecessor. This will help 

you to restore the path between the nodes (in reverse order). 

8. Use traversing in depth or in breadth. Mark every node, if already 

visited. If at any time you reach to a node, which has already been 

visited, then you have found loop. 

Think about how you can find and print the loop itself. Here is an 

idea: while traversing every node keep its predecessor. If at any 

moment you reach a node that has already been visited, you should have 

a path to the initial node. The current path in the recursion stack is also a 

path to the wanted node. So at some point we have two different paths 

from one node to the initial node. By merging the two paths you can 

easily find the loop. 

9. Use the DFS algorithm. Testing can be done with few example graphs. 

10. Use the BFS algorithm. Instead of putting the vertices of the graph in the 

queue, put their numbers (л … N-1). This will simplify the algorithm. 

11. Use traversing in depth and System.IO.Directory class. 

12. Use the example of the tree data structure given in this chapter. Each 

directory from the tree should two arrays (or lists) of descendants: 

subdirectories and files. 

13. Use the solution of problem 8, but modify it so it does not stop when it 

finds a loop, but continues. For each loop you should check if you have 

already found it. This problem is more complex than you may expect! 

14. Use the algorithms for traversing in breadth or depth as a base. 

15. Use the Dijkstra’s algorithm (find it on the Internet). 

16. The requested order is called "topological sorting of a directed graph". 

It can be implemented in two ways: 

For every task t we should know how many others tasks P(t) it depends 

on. We find task t0, which is independent, i.e. P(t0)=0 and we execute it. 

We reduce P(t) for every task, which depends from task t0. Again we 

look for a task, which is independent and we execute it. We repeat until 



Chapter 17. Trees and Graphs  725 

the tasks end or until we find a moment when there is no task tk having 

P(tk)=0. In the last case no solution exists due to a cyclic dependency. 

We can solve the task with traversing the graph in depth and printing 

every node just before leaving it. That means that at any time of printing 

of a task, all the tasks that depend on it should have already been 

printed. The topological sorting will be produced in reversed order. 

17. The graph must be connected and the degree of each of its nodes 

must be even in order an Eulerian cycle in a graph to exits (can you 

prove this?). With series of DFS traversals you can find cycles in the 

graph and to remove the edges involved in them. Finally, by joining the 

cycles you will get the Eulerian cycle. See more about Eulerian paths and 

cycles at http://en.wikipedia.org/wiki/Eulerian_path. 

18. If you write a true solution of the problem, check whether it works for a 

graph with 200 nodes. Do not try to solve the problem so it could work 

with a large number of nodes! If someone manages to solve it for large 

numbers of nodes, he will remain permanently in history! See also the 

Wikipedia article http://en.wikipedia.org/wiki/Hamiltonian_path_problem. 

You might try some recursive algorithm for generating all paths but 

accept that it will be slow. Techniques like backtracking and branch and 

bound could help a bit but generally this problem is NP-complete and 

thus no efficient solution is known to exist for it. 

http://en.wikipedia.org/wiki/Eulerian_path
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Backtracking
http://en.wikipedia.org/wiki/Branch_and_bound
http://en.wikipedia.org/wiki/Branch_and_bound
http://en.wikipedia.org/wiki/NP-complete

